

Atividade de Aprendizagem Disciplina: Matemática (1° ANOS) Prof. Edcarlos Pereira Atividade 07

Assunto: EQUAÇÕES E FUNÇÕES EXPONENCIAIS

1. Revisão de Potenciação - Propriedades

1a)
$$a^m \cdot a^n = a^{m+n}$$

Ex:
$$2^3 \cdot 2^4 = 2^{3+4} = 2^7 = 128$$

$$2^{a}$$
) $\frac{a^{m}}{a^{m}} = a^{m-n}$

2^a)
$$\frac{a^m}{a^n} = a^{m-n}$$
 Ex: $\frac{3^4}{2^2} = 2^{4-2} = 2^2 = 4$

3a)
$$(a \cdot b)^n = a^n$$

3a)
$$(a \cdot b)^n = a^n \cdot a^n$$
 Ex: $(2 \cdot 3)^2 = 2^2 \cdot 3^2 = 4 \cdot 9 = 36$

$$4^a$$
) $\left(\frac{a}{b}\right)^n = \frac{a^a}{b^a}$

4a)
$$\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$$
 Ex: $\left(\frac{4}{5}\right)^2 = \frac{4^2}{5^2} = \frac{16}{25}$

$$5^{\mathbf{a}}) (a^m)^n = a^{m \cdot n}$$

Ex:
$$(4^2)^3 = 4^{2 \cdot 3} = 4^6 = 4096$$

Das propriedades temos:

a)
$$a^{-n} = \frac{1}{a^n}$$

b)
$$a^0 = 1$$

c)
$$a^{\frac{m}{n}} = \sqrt[n]{a^m}$$

Ex:
$$2^{-3} = \frac{1}{2^3} = \frac{1}{8}$$

$$Fx: 4^0 = 1$$

a)
$$a^{-n} = \frac{1}{a^n}$$
 b) $a^0 = 1$ c) $a^{\frac{m}{n}} = \sqrt[n]{a^m}$
Ex: $2^{-3} = \frac{1}{2^3} = \frac{1}{8}$ Ex: $4^0 = 1$ Ex: $4^{\frac{1}{2}} = \sqrt[2]{4^1} = \sqrt{4} = 2$

2. Equações Exponenciais

A equação exponencial é uma equação que possui uma incógnita em seu exponente.

Exemplos:

a)
$$2^x = 64$$

b)
$$3^{x-1} = 243$$

c)
$$3^{x-1} = 243$$
 c)

Como resolver uma equação exponencial?

Basta deixar as bases iguais. Depois resolver uma equação polinomial na igualdade dos expoentes.

Exemplos:

a) Resolva a equação exponencial $2^x = 128$:

$$2^x = 2^7 \implies x = 7$$

b) Qual é o valor de x na igualdade $\left(\frac{1}{6}\right)^x = 216$?

$$\left(\frac{1}{6}\right)^x = 6^3 \quad \Rightarrow \quad \left(\frac{1}{6}\right)^x = \left(\frac{1}{6}\right)^{-3} \quad \Rightarrow \quad x = -3$$

$$\left(\frac{1}{6}\right)^x = \left(\frac{1}{6}\right)^{-1}$$

$$\rightarrow$$

$$x = -3$$

3. Funções Exponenciais

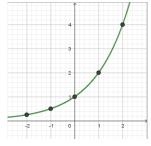
É aquela que a variável está no expoente e cuja base é sempre maior que zero e diferente de um. É dada por: $f(x) = a^x$.

Exemplos:

$$a) f(x) = 2^x$$

b)
$$f(x) = \left(\frac{1}{3}\right)^{x}$$

a)
$$f(x) = 2^x$$
 b) $f(x) = \left(\frac{1}{3}\right)^x$ c) $f(x) = 4^{x-1}$

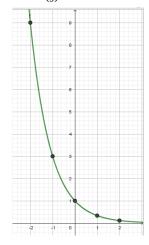

Gráfico da função exponencial

Quando a > 1 (crescente).

Iremos montar o gráfico da função: $f(x) = 2^x$.

Primeiro montamos a tabela:

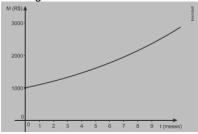
Х	$y = f(x) = 2^x$
-2	$2^{-2} = \frac{1}{-}$
	$2 - \frac{1}{4}$
-1	2-1 _ 1
	$z = \frac{1}{2}$


0	$2^0 = 1$
1	$2^1 = 2$
2	$2^2 = 4$

Quando 0 < a < 1 (decrescente).

Iremos montar o gráfico da função: $f(x) = \left(\frac{1}{2}\right)^x$.

Primeiro montamos a tabela:


Х	$y = f(x) = \left(\frac{1}{3}\right)^x$
-2	$\left(\frac{1}{3}\right)^{-2} = 3^2 = 9$
-1	$\left(\frac{1}{3}\right)^{-1} = 3^1 = 3$
0	$\left(\frac{1}{3}\right)^0 = 1$
1	$\left(\frac{1}{3}\right)^1 = \frac{1}{3}$
2	$\left(\frac{1}{2}\right)^2 = \frac{1}{2}$

Problemas:

- 01) Encontre o valor de x na equação exponencial: $4^x = 64$? c) 4 d) 5 b) 3 a) 2
- 02) Qual é o valor de x na equação exponencial: $3^{x-2} = 81$? a) 4 b) 5 c) 6 d) 7 e) 8
- 03) Resolva a equação: $2^{x+2} 2^x = 96$.
- - c) 4
- d) 5
- 04) Resolvendo a equação $3^{x+1} + 3^{x+2} = 108$, podemos afirmar que o valor de x é:
- a) 1
- b) 2
- c) 3 d) 4
- e) 0
- 05) Encontre os valores de x em $3^{x^2-4} = \left(\frac{1}{27}\right)^x$ a) 1 e 4 b) 1 e -4 c) 2 e 3 d) 2 e -3

- e) 3 e -2
- 06) Construa o gráfico da função $f(x) = 3^x 1$.
- 07) Uma aplicação bancária é representada graficamente conforme figura a seguir.

- M é o montante obtido através da função exponencial $M = C \cdot (1,2)^t$, C é o capital inicial e t é o tempo da aplicação. Ao final de 3 meses o montante obtido será de
- d) R\$ 1.526,00 e) R\$ 1.728,00
- a) R\$ 1.170,00 b) R\$ 1.320,00 c) R\$ 1.410,00
- 08) Uma substância ingerida pelo organismo é excluída pelo sistema excretor segundo uma função exponencial. O tempo de meia vida é o tempo que uma quantidade ingerida leva para decair à metade, que, para a substância em questão, é de 1 horas. A quantidade da substância, em miligramas, a ser ingerida de modo que, ao final de 3 horas, a quantidade restante seja de 5 mg é de
- a) 20 b) 30
- c) 40
- d) 50
- e) 60

O temor do Senhor é o princípio do conhecimento, mas os insensatos desprezam a sabedoria e a disciplina. Provérbios 1:7